A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Choosing the Regularization Parameter in Generalized Tikhonov Regularized Linear Inverse Problems

This paper presents a systematic and computable method for choosing the regularization parameter appearing in Tikhonov-type regularization based on non-quadratic regularizers. First, we extend the notion of the L-curve, originally defined for quadratically regularized problems, to the case of non-quadratic functions. We then associate the optimal value of the regularization parameter for these ...

متن کامل

Low Complexity Regularization of Linear Inverse Problems

Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in man...

متن کامل

A Regularization Method for Time-fractional Linear Inverse Diffusion Problems

In this article, we consider an inverse problem for a time-fractional diffusion equation with a linear source in a one-dimensional semi-infinite domain. Such a problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative. We show that the problem is ill-posed, then apply a regularization method to solve it based on th...

متن کامل

Regularization Techniques for Ill-posed Inverse Problems in Data Assimilation

Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2 , regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Journal International

سال: 2004

ISSN: 0956-540X,1365-246X

DOI: 10.1111/j.1365-246x.2004.02190.x